
20 The Delphi Magazine Issue 37

That’s the Way It Goes
How to sort: the good, the bad, the ugly

A
lg

or
it

h
m

s

A
lfresco

by Julian Bucknall

I was sitting back in the audience
seats at a rehearsal for Alice in

Wonderland recently, feeling kind
of bored. My character, Lewis
Carroll, didn’t have to come on for
a while, and I was watching a dance
routine being rehearsed with the
cards: the three who are busy
painting the white rose bushes red
(having planted the wrong sort)
before the Queen of Hearts comes
by. Part of my mind was trying to
think of a topic for this month’s
column. Suddenly I realised that
the cards (actually three actors
with six foot tall thin foam
mattresses) were shuffling them-
selves, under the supervision of
the choreographer, trying to work
out a set of moves to get them in
order again. Ping! The topic came
into my mind: sorting algorithms,
and what better way to illustrate
them than with cards.

So arm yourself with a pack of
cards and, in honour of Alice, deal
yourself all of the Hearts. When I
describe an algorithm, and we’ll be
visiting a few, try it out with your
hand of cards. This way you’ll be
able to more easily visualise what’s
going on.

Love Child
The first sorting routine people
learn about, probably at their
grandmother’s knee, is the bubble
sort. It’s quite easy to implement,
but unfortunately, it’s also the
worst in terms of efficiency. We’ll
look at it briefly just so that you can
steer clear of it in the future.

Take your hand of Hearts, and
look at the right two cards, the 12th
and 13th. Swap them over, if
needed, to put them in ascending
order. Look at the 11th and 12th.
Swap them over, if required, to put
them in ascending order. Continue
with the 10th and 11th cards, the
9th and 10th cards and so on. Once
you’ve got to the first and second
cards, and swapped them to get
them in order if required, you’ll
have the Ace of Hearts in the last,
leftmost position (we’re assuming
the pip value of the Ace is one). If
you observe what’s happening as
you do this, you’ll see that once
you’ve ‘snagged’ the Ace, it ‘bu-
bbles’ along until it reaches the left
hand side.

Now start over from the right
hand side, and do the same thing
until you get to the second card
and you’ll have the deuce (the two)
in position. Start over yet again
until you reach the third card and
the three of Hearts will be in posi-
tion. Continue, 9 more times, each
time reducing the number of cards
you check. That’s bubble sort. It’s
pretty dreadful, as you can see.
Cards are continually being com-
pared and swapped with each
other, the lowest ones being
caught up and slowly moving along
to their correct position. For a
small number of cards, it’s not so
bad, but just imagine trying to sort
52 cards by this means.

Listing 1 (if you really want to
look at it, that is) is the bubble sort.
At this point a quick note is

procedure BubbleSort(var aItemArray : array of TSortElement;
aLeft, aRight : integer; aLessThan : TLessFunction);

var
i, j : integer;
Temp : TSortElement;

begin
for i := aLeft to pred(aRight) do
for j := aRight downto succ(i) do
if aLessThan(aItemArray[j], aItemArray[j-1]) then begin
Temp := aItemArray[j];
aItemArray[j] := aItemArray[j-1];
aItemArray[j-1] := Temp;

end;
end;

➤ Listing 1: The Bubble sort

necessary on the source for this
article. All the routines assume
some arbitrary type called TSortE-
lement for the elements. This can
be an integer, double, or some-
thing like a record. All the sorts
take an array of these variables, a
left and a right index to sort
between (inclusively), and a func-
tion that takes two elements as
parameters and returns whether
the first is less than the second.
The sort routines all order the
elements in the array in situ.

There is a little known variant of
bubble sort that works better: the
shaker sort. Start off as with the
bubble sort. Once the Ace is in
position, instead of starting over
from the right hand side as we did
with the bubble sort, start over
from the left. Compare the second
and third cards, swap them if
needed. Do the same with the 3rd
and 4th, the 4th and 5th, and so on
until you reach the end. You’ll
have snagged the King en route and
it will be in the 13th position. Now,
go back from the right, comparing
and swapping until you get the
deuce in position. Continue going
back and forth until you find the
seven is in position.

As you may gather from the
description, coding a shaker sort is
a little more involved. Listing 2 has
the details. Like the bubble sort I
won’t go through the details: there
are better sorts to use, so the
shaker sort is somewhat of
academic interest.

Breakout
The next sort we’ll consider is the
selection sort. This is a fairly good
sort in certain circumstances and

September 1998 The Delphi Magazine 21

is much easier to understand.
Starting at the right, scan the cards
until you find the Ace. Swap it with
the first card. Scan the cards from
the right again, until you find the
deuce. Swap it with the second
card. Scan from the right again
until you find the three. Swap it
with the third card. Continue the
same process with the four, five,
six, etc. You’ll find that you have to
loop 12 times through the hand to
get all the cards in their proper
positions (the 13th loop is not
required, since obviously the King
will be in the correct place
already).

If you think about it a little, this is
almost like the bubble sort except
we drastically reduce the number
of swaps we do. We identify the
smallest and then we do the swap.
With bubble sort we’re swapping
as we’re scanning.

Obviously we took a short cut in
our example with selection sort: in
real life we don’t know which is the
smallest card in our hand. We have
to scan though all the cards from
the right up to the current end
point to find the smallest. Apart
from that, the Delphi routine fol-
lows the physical card sorting
pretty well. See Listing 3 for the
routine.

I mentioned that this sort was
“good in certain circumstances”.
The thing to note about selection
sort is that there are a maximum of
n-1 swaps to make to get the n
cards into their correct positions.
If the elements that we’re sorting
are large (and hence swapping
them is time consuming or, to put it
another way, swapping two ele-
ments is very expensive time-wise
compared with comparing them)
this sort is in fact the best we can
do. The time to perform a selection
sort is otherwise dominated by the
comparisons we have to do.

Better Make It Better
The next sort on our agenda is the
insertion sort. If anyone has played
whist or bridge, they certainly will
be familiar with this one. We start
from the left this time. Compare
the first two cards. Put them in
order. Look at the third card. Insert
it into the right place among the

procedure ShakerSort(var aItemArray : array of TSortElement; aLeft, aRight :
integer; aLessThan : TLessFunction);

var
i : integer;
Temp : TSortElement;

begin
while (aLeft < aRight) do begin
for i := aRight downto succ(aLeft) do
if aLessThan(aItemArray[i], aItemArray[i-1]) then begin
Temp := aItemArray[i];
aItemArray[i] := aItemArray[i-1];
aItemArray[i-1] := Temp;

end;
inc(aLeft);
for i := succ(aLeft) to aRight do
if aLessThan(aItemArray[i], aItemArray[i-1]) then begin
Temp := aItemArray[i];
aItemArray[i] := aItemArray[i-1];
aItemArray[i-1] := Temp;

end;
dec(aRight);

end;
end;

➤ Listing 2: The Shaker sort

procedure SelectionSort(var aItemArray : array of TSortElement; aLeft, aRight :
integer; aLessThan : TLessFunction);

var
i, j : integer;
IndexOfMin : integer;
Temp : TSortElement;

begin
for i := aLeft to pred(aRight) do begin
IndexOfMin := i;
for j := succ(i) to aRight do
if aLessThan(aItemArray[j], aItemArray[IndexOfMin]) then
IndexOfMin := j;

Temp := aItemArray[i];
aItemArray[i] := aItemArray[IndexOfMin];
aItemArray[IndexOfMin] := Temp;

end;
end;

➤ Listing 3: The Selection sort

first two (of course, it may already
be in the correct position). Look at
the fourth card and insert it into
the correct position in the three
cards that are already sorted. Con-
tinue with the 5th, 6th, etc, cards.
You’ll notice that the cards on the
left of the card being considered
are always sorted.

Listing 4 shows my first imple-
mentation of this sort. We shall put
aside our cards for a moment,
because we can fiddle with the
implementation of this algorithm
to make it a little more efficient.

procedure UsualInsertionSort(var aItemArray : array of TSortElement;
aLeft, aRight : integer; aLessThan : TLessFunction);

var
i, j : integer;
Temp : TSortElement;

begin
for i := succ(aLeft) to aRight do begin
Temp := aItemArray[i];
j := i;
while (j > aLeft) and aLessThan(Temp, aItemArray[j-1]) do begin
aItemArray[j] := aItemArray[j-1];
dec(j);

end;
aItemArray[j] := Temp;

end;
end;

➤ Listing 4: The Insertion sort

If you look at the code you’ll see
that the inner loop, where we are
trying to find a place to insert our
current item, stops with one of two
conditions. The first condition is
that we manage to find an element
that is less than the one we are
trying to insert. (At that point we
know where to insert our element:
just after the smaller element we
found.) The second condition is
that we’ve run out of elements: the
item we’re trying to insert is
smaller than all the currently
sorted elements. We need to insert

22 The Delphi Magazine Issue 37

our item before all the other sorted
elements. But note that this second
condition is tested with every pass
through the loop, but it’s only used
when we’ve managed to scan
through all the elements and we
need to stop falling off the end. Tra-
ditionally, the way to get rid of this
extra check per loop is to have a
sentinel element on the end, one
that is less than all the other ele-
ments. I’ve always found this to be
a cop-out in real programming life.
Firstly, sometimes you don’t know
what the smallest value might be
(quick, what is the smallest
number that can be represented by
a variable of type Double?) and sec-
ondly, sorting routines are gener-
ally written to accept an array and
a number of elements and you have
to sort the array in situ. Where are
you going to put this extra ele-
ment? You’d have to allocate an
array that is one larger in size than
the array you’re passed, set the
first element to this smallest value,
copy over all the other elements
from the array you’re passed, sort
them, and then copy all the ele-
ments back. Brrrr, thanks, but no
thanks.

An alternative is to have a pre-
sort pass where you find the small-
est element in the set you’re given,
put that into the first position
(essentially, the first pass is with a
selection sort), and then perform
the insertion sort without worry-
ing about falling off the end. Listing
5 shows this version of insertion
sort.

Before moving on, we should dis-
cuss the performance characteris-
tics of these sorts. We briefly
mentioned a performance charac-
teristic of the selection sort (it’s
great if element moves take a long
time), but let’s be a little more pre-
cise. The time to execute a sort of
the type discussed so far is propor-
tional either to the number of ele-
ment comparisons, to the number
of element moves or exchanges, or
both. All these sorts are quadratic-
time algorithms, both in the worst
case (the elements are reverse-
sorted to begin with) and in the
average case. In other words, if it
takes x milliseconds to sort 100 ele-
ments, it’ll take 100x milliseconds

procedure InsertionSort(var aItemArray : array of TSortElement; aLeft, aRight :
integer; aLessThan : TLessFunction);

var
i, j : integer;
IndexOfMin : integer;
Temp : TSortElement;

begin
{find the smallest element and put it in the first position}
IndexOfMin := aLeft;
for i := succ(aLeft) to aRight do
if aLessThan(aItemArray[i], aItemArray[IndexOfMin]) then
IndexOfMin := i;

if (aLeft <> IndexOfMin) then begin
Temp := aItemArray[aLeft];
aItemArray[aLeft] := aItemArray[IndexOfMin];
aItemArray[IndexOfMin] := Temp;

end;
{now sort via insertion method}
for i := aLeft+2 to aRight do begin
Temp := aItemArray[i];
j := i;
while aLessThan(Temp, aItemArray[j-1]) do begin
aItemArray[j] := aItemArray[j-1];
dec(j);

end;
aItemArray[j] := Temp;

end;
end;

➤ Listing 5: The better Insertion sort

to sort 10 times as many elements,
or 1000 of them. As you can see the
time taken to do these sorts
increases by leaps and bounds the
more elements there are to sort.
Although sorting a small number of
elements would be virtually instan-
taneous, with a larger number it
would give you time to go get a cup
of coffee.

Having said that, what happens if
one of these sorts operates on a set
of elements that’s ‘almost’ sorted?
Consider how the sorts would
work on a completely sorted file.
Insertion sort is probably the most
efficient: it makes one pass
through the set and determines
that all elements are in their cor-
rect place. Bubble sort and shaker
sort and selection are all about as
bad as each other: they make a
complete pass through the set and
for each element they make a com-
parison pass through the remain-
ing elements. If we modify bubble
and shaker sort to exit once a pass
occurs without any swapping of
elements, they too can ‘sort’ an
already sorted set in one pass.
Selection sort has no simple way to
find out if the file is sorted. On an
almost sorted set of elements,
research has shown that a modi-
fied bubble or shaker sort or an
insertion sort is almost linear in
time. The best that can be said for
selection sort is the conclusion we
came to before: if the time to move
an element is large compared to
the time to compare two elements,

then selection sort is almost linear
(for N elements there will be N-1
exchanges at most and that time
will swamp the N2/2 comparisons
at worst.)

I would like to reinforce the fact
that, if all the elements are either in
the correct position or at most a
few elements away from their cor-
rect position, insertion sort is the
king as it runs in linear time. We’ll
be using this fact in a moment.

With these four sorts out of the
way, we’ve completed looking at
the so-called elementary sorts.
The next set of sorts (shellsort,
merge sort and heap sort) are
more advanced. I won’t deal with
merge sort or heap sort in this arti-
cle: merge sort because it deserves
an article to itself and heap sort
because it relies on a data struc-
ture called a priority queue that
we’ll also deal with at another
time. Shellsort is fair game though
and doing it with cards will take
some doing.

Fooled By A Smile
Shellsort is named after its inven-
tor, Donald L Shell, and at first I
found it a little bizarre; most
probably because I was trying to
see the ‘shells’ (my first exposure
to it didn’t explain the name). Look
back at the standard insertion sort
(rather than our optimised one).
Imagine that the smallest element
is found at the end of the unsorted
set. How many exchanges are
required to get this element to its

24 The Delphi Magazine Issue 37

rightful position? Well, it’ll happen
right at the end of the sort, and it’ll
be swapped over with every single
element as the algorithm drags it
all the way to the start of the set.
Shellsort is a variant of insertion
sort that attempts to move well-
out-of-place elements to their
rightful positions by jumping over
intermediary elements.

Back to the cards. Doing this in
your hands is a little difficult, so
shuffle the Hearts and deal them
out in one row. Push up the first
card and every fourth card from
that point (ie, you’ll push up the
1st, 5th, 9th and 13th cards). Inser-
tion sort these four cards. Push
them back down again. Now push
up every 4th card starting with the
second card (ie, the 2nd, 6th and
the 10th cards). Insertion sort
these three. Continue this process
until you reach the 5th card, at
which point you’ve completed this
first stage. The cards are now said
to be in 4-sorted order. Whichever
card you select, the subset gener-
ated by counting 4 cards forwards
and backwards is sorted. Note the
set as a whole is still not sorted, but
every card has been visited at least
once. No matter how hard you
shuffled, cards are now in the
vicinity of where they should be,
large jumps have been made in
exchanges. Now we perform a stan-
dard insertion sort through the set
of cards. That in essence is the
Shellsort.

To be more rigorous, the Shell-
sort works by insertion sorting
subsets of the main set. Each
subset is obtained by taking every
hth element starting at any posi-
tion in the original set. There will
be h subsets to independently sort.
Once the set of elements is
h-sorted, we reduce h to some new
value and then h-sort the set with
this new value. We continue until
we reach the value 1 for h and we
perform a standard insertion sort
(which could be called 1-sorting
the set). The essence of Shellsort is
that h-sorting with large values of h
causes elements to jump into the
vicinity of their correct places
quickly. As we reduce h, we find
elements migrate quickly to their
correct positions, and the final

1-sort cleans everything up with-
out elements moving much at all.

I’m sure you’ll agree this is a bit
too much hand-waving. What
values of h do we use? Well, this is
difficult to say. Shell, in his original
paper, suggested the sequence 1,
2, 4, 8, 16, 32, etc (in reverse, obvi-
ously) but this suffers badly in the
worst case because odd numbered
elements are never compared to
even-numbered elements until the
final pass. If you managed to get the
smallest half of the elements in the
odd positions and the largest half
in the even positions, you’d still
have a lot of movement to do in
that final pass.

The mathematics to prove good
characteristics for a given
sequence is extremely difficult for
such a simple algorithm, and
indeed there may be better
sequences for h than have been
devised so far. Unfortunately no
one has yet managed to analyze
Shellsort, thus comparing Shell-
sort with other sorts mathemati-
cally is difficult. We are forced to
rely on statistical methods to
analyze different sequences and
against other sorts.

D E Knuth proposed the
sequence 1, 4, 13, 40, 121, etc (each
value is one more than three times
the previous). This has good per-
formance characteristics for mod-
erately large sets as well as being
simple to calculate. We use
Knuth’s sequence in the code in

Listing 6. Another sequence that is
better for large N is 1, 8, 23, 77, etc
(ie, 4i+1+3·2i+1 for i>=0) but it’s a
little more complex to calculate.

Compared with the sorts we’ve
seen so far, Shellsort is relatively
stable in terms of best and worst
execution profiles. It is remarkably
difficult (mainly because Shellsort
has not been analysed fully) to
devise a set that causes Shellsort
with a given sequence to revert to
quadratic time. For this reason,
and for the fact that it’s easy to
code (especially with Knuth’s
sequence), Shellsort makes a good
first choice for sorting moderately
large to large sets. We’ll be visiting
quicksort in a moment, which is
especially faster with large sets,
but it is harder to get quicksort to
behave with certain ordered sets,
and getting a correct version of
quicksort requires considerably
more code, and more complex
code at that.

Surrender
And so we reach the well-known
quicksort. We’ll be spending some
time on this sort variant so go get a
quick cuppa first and get your
cards.

Shuffle and deal the Hearts into a
line. Choose the end card, the thir-
teenth. What we will be doing is to
partition the cards so that all cards
less than the thirteenth appear to
its left and all greater cards are to
its right. We then perform the same

procedure ShellSort(var aItemArray : array of TSortElement; aLeft, aRight :
integer; aLessThan : TLessFunction);

var
i, j : integer;
h : integer;
Temp : TSortElement;

begin
{firstly calculate the first h value we shall use: it'll be about
one ninth of the number of the elements}
h := 1;
while (h <= (aRight - aLeft) div 9) do
h := (h * 3) + 1;

{start a loop that'll decrement h by one third each time through}
while (h > 0) do begin
{now insertion sort each h-subfile}
for i := (aLeft + h) to aRight do begin
Temp := aItemArray[i];
j := i;
while (j >= (aLeft+h)) and aLessThan(Temp, aItemArray[j-h]) do begin
aItemArray[j] := aItemArray[j-h];
dec(j, h);

end;
aItemArray[j] := Temp;

end;
{decrease h by a third}
h := h div 3;

end;
end;

➤ Listing 6: The Shell sort

September 1998 The Delphi Magazine 25

process on each of these two sets
of cards, the lesser set and the
greater set, and so on, so forth.
Right, here goes. Start from the left,
and find the first card that is
greater than or equal to our card.
Starting from the right (ie, the
twelfth card), find the first card
that is less than or equal to our
card. These two cards are out of
place, so we swap them over. Con-
tinue from where we left off on the
left and find the next card that is
greater or equal to than our card.
Do the same from the right finding
the next lesser or equal to and
swap over. Eventually we’ll find
that our scanning from the left and
right cross over. Swap over the
card at which we crossed (it’ll be
larger than our card) with our card,
the thirteenth. We now have all
cards less than the one we’re inter-
ested in on its left and all those
greater than ours on its right. Push
up this card (just to note where we
are). Take the left hand set, and do
the same thing. Continue in this
way until the set of cards we’re
trying to partition has no cards in
it, or just one (which, by definition
almost, is bound to be sorted).
Now consider the next unsorted
set on the right. And perform the
same process.

To help you along, here’s an
example with cards I dealt recently
(I’ve marked the Ace as 1, the Jack
as J, Queen as Q, and King as K). I
dealt the following:

J 1 5 2 Q K 9 10 7 4 8 3 6

For the start, we’ll choose the 6 as
our partition card. Scan from the
left until we find a card greater than
6: the Jack. Scan from the right
until we find a card less than the 6:
the 3. Swap them over (I’ve marked
the cards that moved in red)

3 1 5 2 Q K 9 10 7 4 8 J 6

Continue. From the left we reach
the Queen, from the right we reach
the 4. Swap them over:

3 1 5 2 4 K 9 10 7 Q 8 J 6

Continue. From the left we reach
the King, from the right we reach

the 4, but we crossed over. Swap the
King and the 6, the card we
selected in the first place. Notice
that everything less than 6 is to its
left and everything greater is to its
right; hence the 6 must be in the
correct place. We’ll underline the 6
to indicate it’s in the right position.

3 1 5 2 4 6 9 10 7 Q 8 J K

Take the left hand set and do the
same. The 4 is the card du jour.
Scan from the left, the first card
greater than 4 is the 5; from the
right, the first smaller is the 2.
Swap them over.

3 1 2 5 4 6 9 10 7 Q 8 J K

Scan from the left for a greater
card, we get the 5 again. From the
right, we hit the 2, but we crossed
over. So swap the 5 and the parti-
tion card, the 4. The 4 is now in its
correct place and is underlined.

3 1 2 4 5 6 9 10 7 Q 8 J K

Take the new left hand set and do
the same. The partition card is the
2. Scan from the left for the first
greater (the 3) and from the right
for the first lesser (the 1). Swap
them over.

1 3 2 4 5 6 9 10 7 Q 8 J K

Scan from the left, we hit the 3 and
scanning from the right we cross
over. So swap the 3 with our parti-
tion card, the 2. It’s now in the right
place, so underline it.

1 2 3 4 5 6 9 10 7 Q 8 J K

Take the new left hand set: it has
one card, therefore it must be in
the right place. Underline it.

1 2 3 4 5 6 9 10 7 Q 8 J K

Take the next set from the left.
Again it has one card (the 3), so is
in the correct place. The next set
along also has one card. At this
point, our cards look like this:

1 2 3 4 5 6 9 10 7 Q 8 J K

Now apply this process to the
remaining subset (the one on the
right from the original partition).
Here’s the sequence of ‘moves’
(although note that a lot of times
no swapping takes place):

1 2 3 4 5 6 9 10 7 8 Q J K
1 2 3 4 5 6 9 10 7 8 J Q K
1 2 3 4 5 6 7 10 9 8 J Q K
1 2 3 4 5 6 7 8 9 10 J Q K
1 2 3 4 5 6 7 8 9 10 J Q K
1 2 3 4 5 6 7 8 9 10 J Q K
1 2 3 4 5 6 7 8 9 10 J Q K
1 2 3 4 5 6 7 8 9 10 J Q K

Low Down Dirty Business
Quicksort, then, is an example of a
divide and conquer technique, and
is innately recursive. Also from
watching me play cards, or from
your own experiments, it’s also
relatively tedious once subsets get
quite small.

The version of quicksort I dem-
onstrated above is also extremely
bad when the original set was
sorted: the subsets always appear
on the left, and reduce in size by
one each time, the minimum
allowed. We will be discussing

procedure UsualQuickSort(var aItemArray : array of TSortElement; aLeft, aRight :
integer; aLessThan : TLessFunction);
procedure QuickSortPrim(L, R : integer);
var
DividingItem : integer;

begin
{stop the recursion, if needed}
if (R - L) <= 0 then
Exit;

{otherwise, partition about the final element in the set}
DividingItem := Partition(L, R);
{recursively quicksort the two subsets either side of the dividing
element}
QuicksortPrim(L, pred(DividingItem));
QuicksortPrim(succ(DividingItem), R);

end;
begin
{start it all off}
QuicksortPrim(aLeft, aRight);

end;

➤ Listing 7: The quicksort recursive routine

26 The Delphi Magazine Issue 37

ways around some of these points
in a moment.

Because it is recursive we have
to consider the stack size required
by the routine. If we’re lucky and
don’t hit a ‘bad’ set that causes
quicksort to deteriorate, although
we’ll be discussing ways of getting
round this, we split the set into two
at each pass and call the quicksort
routine recursively, once for each
set. So, the maximum number of
times we’ll recurse is log n where n
is the number of elements in the
set. So for 1,000,000 items we’ll go
to about 20 levels. This is well
within the ability of the 32-bit
stack. If we do hit a bad set, we’ll
recurse about n times, not very
good at all.

If we assume there exists a rou-
tine called Partition, then quick-
sort can be coded recursively as in
Listing 7. The first line of code is
the recursion terminator: there’s
no need to do anything further if
the number of elements to sort is
less than or equal to 1, by defini-
tion a set of one element (or less!)
is already sorted. If this condition
does not apply then we partition
the set, and then quicksort the two
subsets created by the partition by

recursively calling the Quick-
SortPrim routine.

The Partition routine is a little
more involved and is shown in List-
ing 8. We first set the left and right
indexes, i and j, and save the parti-
tion element (using a local variable
will be faster than accessing the
array element in the loops that
follow). We now enter an infinite
loop and will break out of it when
the indexes cross. We could use a
normal while loop at this point,
checking for index j crossing i, but
the code inside the loop would
have the same check as well,
making two checks per loop
instead of one. The first thing to do
in the loop is to find the first ele-
ment from the left that is greater
than or equal to our partition ele-
ment. Note that we know we won’t
fall off the end of the array with this
loop since our partition element
acts as a sentinel. Next, we find the
first element from the right that is
less than our partition element.
Here we do have to explicitly check
for falling off the end of the array:
the partition element may be the
smallest item in the set. If the
indexes have crossed we know
we’ve found the correct position

for the partition element and so we
break out of the infinite loop. Oth-
erwise the elements found are out
of place and are swapped over.
Round the loop we go again. Once
we’ve broken out of the loop we
swap the partition element into
place and return the index where it
divides the set.

Making The Right Move
One thing I mentioned early on,
and one that you would have
noticed if you’d tried a quicksort
with cards, is that once the sets get
very small there’s a lot of trivial
work going on to partition and sort
them. If a subset has three or four
elements, for example, the parti-
tioning exercise seems to take for-
ever and sorts the elements in a
quite remarkably roundabout way.
One speed improvement we can do
to quicksort is to stop recursively
sorting subsets, once the subset is
less than some number of ele-
ments. Think about what the over-
all set looks like at that point. All
the elements in the set are roughly
in the right place, but they may be
adrift by at most our cut-off
number of elements. I took my
example deal of Hearts I used
above, set the cut-off at 3 elements
(ie, subsets with 3 or less cards
were not quicksorted) and
obtained the following series:

J 1 5 2 Q K 9 10 7 4 8 3 6
3 1 5 2 Q K 9 10 7 4 8 J 6
3 1 5 2 4 K 9 10 7 Q 8 J 6
3 1 5 2 4 6 9 10 7 Q 8 J K
3 1 2 5 4 6 9 10 7 Q 8 J K
3 1 2 4 5 6 9 10 7 Q 8 J K
3 1 2 4 5 6 9 10 7 8 Q J K
3 1 2 4 5 6 9 10 7 8 J Q K
3 1 2 4 5 6 7 10 9 8 J Q K
3 1 2 4 5 6 7 8 9 10 J Q K

Notice that we have four elements
fixed in place, and the remaining
nine are either fortuitously in the
correct position, or very close. So
what? I hear you ask. Well, if we did
an insertion sort on the partially
sorted subsets when we get to
them, it would be very fast, since
elements would not have to move
far at all.

So a good improvement to quick-
sort is as follows. First, set a cut-off

function Partition(L, R : integer): integer;
var
i, j : integer;
Last : TSortElement;
Temp : TSortElement;

begin
{set up the indexes}
i := L;
j := pred(R);
{get the partition element}
Last := aItemArray[R];
{do forever (we'll break out of the loop when needed)}
while true do begin
{find the first element greater than or equal to the partition
element from the left; note that our partition element will
stop this loop}
while aLessThan(aItemArray[i], Last) do inc(i);
{find the first element less than the partition element from the
right; check to break out of the loop if we hit the left
element - we have no sentinel there}
while aLessThan(Last, aItemArray[j]) do begin
if (j = L) then Break;
dec(j);

end;
{if we crossed get out of this infinite loop to swap the
partition element into place}
if (i >= j) then Break;
{otherwise swap the two out-of-place elements}
Temp := aItemArray[i];
aItemArray[i] := aItemArray[j];
aItemArray[j] := Temp;
{and continue}
inc(i);
dec(j);

end;
{swap the partition element into place, return the dividing index}
aItemArray[R] := aItemArray[i];
aItemArray[i] := Last;
Result := i;

end;

➤ Listing 8: The Partition routine for quicksort

28 The Delphi Magazine Issue 37

point. Second, subsets that have
this number of elements or less are
not quicksorted; we use an inser-
tion sort instead. Brilliant! But the
question then arises: what is the
cut-off point? Three, like my card
example? Or larger? Well, the card
example is somewhat of a forced
case: we’re only sorting 13 cards
after all, and I selected a cut-off of
three just to illustrate the point.
Research has shown that there is
no ideal cut-off: any value from 5 to
about 20 is good. It depends too
much on the machine the sort is
running on, how the compiler con-
verts the code into machine code,
the size of the elements, the
number of elements. Using 10 is as
good as we’ll get without
fine-tuning the quicksort for our
particular environment.

We now need to think about the
partition element, the element
about which we divide up a set. Ide-
ally, we would like to choose the
partition element that splits the set
into roughly two equal halves. In
the algorithm we have used so far,
we’ve just chosen the rightmost

element without worrying about
whether this is a good choice.
(Indeed I showed that, in one par-
ticular case - a fully sorted set, it’s
the worst element to choose.)
Unfortunately, without scanning
the entire set, there is no way to
find out the exact median element,
except by chance (the median ele-
ment of a set would split the set
into two equal halves, and indeed
the most efficient way to find it is
by a partitioning algorithm). If the
set of elements was in a random
order, our simple strategy would
be pretty good, on the average.
Sometimes it would be close to the
actual median, sometimes way off.
We can do better, though.

One simple strategy for deter-
mining a partition element is to use
a random selection from the set. If
the set has n elements, then gener-
ate a random number index
between 0 and n-1 and use that
element as the partitioning ele-
ment, swap it over with the final
element and then proceed with the
normal partitioning code. This
algorithm relies on probability

(and your random number genera-
tor!) to improve the running time
of quicksort (the probability of
always selecting the worst parti-
tion element is vanishingly small).

Another, but probably more
effective, strategy to choose the
partition element is the Median Of
Three method. Take the first ele-
ment, the last element and the one
in the middle. Find the median of
these three elements (ie, sort
them, and use the middle element)
and swap it with the last element.
Now we proceed to partition the
set as before. What we’ve done
with this strategy is to take a small
sample of the elements in the set
and assumed that the median of
this sample is roughly the same as
the median of the entire set. For a
randomly ordered set, this strat-
egy is much better than the one we
have been using. We’re getting a
better guess at the partition ele-
ment, and generally it’ll be closer
to the median than just taking a
single element. For an already
sorted set, this strategy is brilliant:
we’ll always choose the correct

September 1998 The Delphi Magazine 29

median element and the partition-
ing process will be pretty well
optimal.

And there’s another great thing
that the Median Of Three method
gives us for free if we’re prepared
to do a little extra work. Swap the
middle element of the set with the
last but one element. Sort the first,
penultimate and last elements, so
that the smallest is at the first posi-
tion, the median element at the last
but one position and the largest at
the final place. Now we can per-
form the partition on the set
formed by the elements between
the second and penultimate ele-
ments (the first and last are
already correctly partitioned). The
first element of the set forms a sen-
tinel for the partitioning process
on the left hand side, and we can
get rid of the extra check in an
inner loop of the Partition routine.

The final quicksort and partition
code can be found on this month’s
diskette. It includes the two
improvements we have discussed:
the Median Of Three strategy, and
the cut-off point and insertion sort.
Compared with the original quick-
sort, the improved version is about
25% faster for sorting a million dou-
bles (the percentage decreases for
smaller sets, for 100,000 doubles
it’s about 16% faster).

Mama Didn’t Raise No Fool
Well, we’ve reached the end of the
road for this particular article.
We’ve seen six different sort algo-
rithms: bubble sort, shaker sort,
selection sort, insertion sort, Shell-
sort, and quicksort. Two others
were briefly mentioned as being
prime targets for further articles:
merge sort and heap sort. We
briefly discussed the pros and
cons of these six and showed some
improvements. We managed to
whittle them down to a top two:
improved quicksort for the general
case, and selection sort for the
case where moving an element is
expensive in time.

I would also put forward two
other sorts for extremely specific
cases. The first is insertion sort, for
the case where not many elements
are out of order (I once used an
insertion sort where I wanted to

add a single element to an already
sorted list: I added it to the end and
then insertion sorted the list). The
second is Shellsort, for the case
when you have to code the sort
yourself. The quicksort code is
extremely easy to get wrong (or,
conversely, hard to get right) and
you’ll never notice until it’s too
late. When I was writing the code
for this article, the only sort I had
problems coding was the quick-
sort, all the others worked first
time. Indeed, I almost (but only
just!) shipped our esteemed editor
a completely broken quicksort in
the source files that accompany
this article: I just didn’t notice until
I got worried having noticed that
my quicksort was slower than my
Shellsort. Not only slower but it
would produce a sort with items
out of place. Caveat programmer.

Anyway, to illustrate the sorts,
I’ve included on the disk a program
that shows them in action. You can
run each sort on a set of items and
the program shows the moves
being made to sort the items by dis-
playing them as lines and moving
the lines. This program gives you a
good feel for how the individual
sorts move items around to get
them in the correct place; it does
not, however, attempt to show you
any performance characteristics.
Indeed, the sort that fares the best
with this program is the selection
sort: because the time taken to dis-
play the lines when swapping ele-
ments is much larger than
comparing elements, selection
sort outdoes all the others. Also,
the program demonstrates very
well how shaker sort got its name.

Julian Bucknall is a sort of
programmer. He does have a
sister, but she doesn’t swing out
that often. The code that accom-
panies this article is freeware and
can be used as-is in your own
applications.

© Julian M Bucknall, 1998

	Love Child
	Breakout
	Better Make It Better
	Fooled By A Smile
	Surrender
	Low Down Dirty Business
	Making The Right Move
	Mama Didn’t Raise No Fool

